THE THERMAL STABILITY OF $RBa_{2-x}K_xCu_3O_z$ (R = Y and Eu)

I. Felner

Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, ISRAEL.

ABSTRACT

The thermal stability of ceramic compounds $RBa_2Cu_3O_z$ $R=Y$ and Eu where Ba^{++} is replaced by K^+ is investigated here by TG analysis. The release of oxygen in $RBaKCu₃O_z$ compounds starts at about 700°C, which is much higher than for undoped samples. Two major steps in the TG curves are observed for RBa_1 .5Ko.5Cu3O_z samples, corresponding to the oxygen-release temperatures of undoped and doped samples, respectively.

INTRODUCTION

Many experimental studies of superconductivity in $YBa_2Cu_3O_2$ have investigated the effects of substituting different ions at various sites in the lattice. In recent studies $[1-2]$ we substituted monovalent K^+ for divalent Ba²⁺; they have similar ionic radii, 1.33Å and 1.35Å, respectively. In most cases the introduction of impurity atoms other than rare earths into the YBa₂Cu₃O_z lattice drastically reduces T_c and shifts the crystal symmetry from orthorhombic to tetragonal^[3]. In the case of $YBa_2Cu_3O_z$, up to 50% of the Ba has been replaced by K without noticeably affecting T_c , crystal symmetry, or lattice parameters. On the other hand, the EuBa $_{2-x}K_XCu_3O_z$ system behaves quite differently. A progressive decrease in T_c is observed with increasing K+ concentration (Table I), leading ultimately to a non-superconducting compound, EuBaKCu3O_z. X-ray powder diffraction showed^[2] all these samples to be single-phase with an orthorhombic unit cell for pure $\texttt{EuBa}_2\texttt{Cu}_3\texttt{O}_\textbf{z}$, whereas a tetragonal structure is induced in the K+ doped samples.

Thermal Analysis Highlights, 9th ICTA, Jerusalem, Israel, 21-25 August 1968. 0040-6031/89/\$03.50 © 1989 Elsevier Science Publishers B.V.

In the present paper it is shown that, although the superconducting behavior of $RBa_{2-x}K_xCu_3O_z$ systems differs for $R=Y$ and $R=Eu$, the thermal stability patterns for both systems are quite similar. It **is** evident that both RBaKCu3O₇ compounds are much more stable than the corresponding RBa₂Cu₃O₇ compounds. In the undoped systems oxygen loss starts at 450-500°C, while in the K-doped systems oxygen is not released below about 700°C. At intermediate concentrations two major steps are observed in the TG curves,

EXPERIMFNTAL DETAILS

Experimental details concerning sample preparation and susceptibility measurements to determine T_c are given in ref. 2. Thermogravimetry in a reducing atmosphere was carried out with a Mettler Thermal Analyzer at a constant temperature increment rate of 10° C/min.

RESULTS AND DISCUSSION

The oxygen weight losses of some samples investigated are shown in Figs. 1 and 2. The TG curves obtained for undoped $YBa_2Cu_3O_z$ and $EuBa_2Cu_3O_z$ (not shown) are similar to curves reported by others $[4-6]$. On exposure to the laboratory environment some water is absorhed, causing the slight decrease in weight observed at low temperatures. Oxygen begins to be liberated in significant quantities at about 450°C, indicated by a weight loss of 1.6% at the first step of the YBa₂Cu₃O_z curve (Fig. 1), corresponding to a loss of 0.66 oxygen atoms per formula unit **(Table 1).** Progressive weight loss continued up to 80O"C, resulting in a nonsuperconducting phase.

For the RBaKCu3O_z compounds, the thermal stability behavior is quite different. Beside the slight decrease in weight observed at low temperatures, no weight loss is observed for either sample up to 600°C (Fig. I-2). A minor step in the curves is observed at 700° and 760° for R=Y and Eu, respectively. Most of the oxygen is released at 810° and 860°C, respectively (Table 1). It is worth noting that no weight loss is observed in any of the RBaKCu3O, samples at 450-500°C, independent of **whether the** sample is superconducting - $(YBaKCu_3O_7)$ or not $(EuBaKCu_3O_7)$. In the intermediate composition

276

					oxygen weight loss				
		$a(\lambda)$ $b(\lambda)$ $c(\lambda)$ $T_c(K)$			T° (C) atom T° (C) atom			z	
$YBa_2Cu_3O_z$	3,822	3,891	11.67	90	450	0.66			
$YBa_1.SK_0.SCu_3O_2$	3.826	3.893	11.67	90	450	0.25	800	0.25	
YBaKCu3O _z	3.835	3,889	11.64	88	600	0.11	810	0.78	
$EuBa1.5K0.5Cu3Oz$	3.863		11.59	64	520	0.33	820	0.58	
EuBAKCu ₃ O ₂	3.859		11.67		760	0.12	860	0.95	

Lattice parameters, T_c and thermal stability data for $RBa_{2-x}K_{x}Cu_{3}O_{z}$ compounds.

TABLE 1

 $RBa_1, 5K_0, 5Cu_3O_z$ two major steps in the TG diagrams are observed: the first at about 450-520 °C, corresponding to about 0.3 oxygen atoms per unit cell; and the second, at about 800°C, at which an additional oxygen is released. The total weight loss represents less than one oxygen atom per unit cell. Note

Thermogravimetric curves or $YBa_{2-x}K_XCu_3O_z$ compounds. $Fig. 1$

Fig. 2 Thermogravimetric curves of $EuBa_{2-x}K_XCu_3O_z$ compounds.

that both steps occur in the same temperature ranges as those of the $RBa_2Cu_3O_7$ and RBaKCu3O_z systems mentioned above.

In a previous paper^[2] it was shown that in the RBa_{2-x}K_xCu₃0_z system a single-phase structure persists up to x=1. Above this concentration a multiphase system is observed. Our conclusion is that in the orthorhombic $RBa_2Cu_3O_7$ unit cell, which contains two equivalent Ba sites, it is possible to replace $only$ one Ba ion with K. It thus appears that the thermal stability of the oxygen depends on whether the unit cell contains K or not. In the pure system oxygen from the Cu-0 chains along the b-axis hegins to be liberated when heated to above 450°C. This oxygen atom is surrounded only by Cu and Ba atoms. On the other hand, in RBaKCu₃O₂ each unit cell contains one K^+ ion, so that oxygen in the chains is surrounded by K ions as well. Apparently the $RBa_1_5K_0_5Cu_3O_2$ system has two distinct kinds of unit cell, one containing K ions, the other without them: in unit cells which do not contain K+, oxygen is released at 450-500°C, as in the pure $RBa_2Cu_3O_z$ system; the second major weight loss, at about 800°, is related to those unit cells in which Ba⁺⁺ is replaced by K+ ions. Note that the amount of oxygen released at each step is the same in the case of R=Y. As Ba^{++} is substituted for K^+ in $RBa_2Cu_3O_2$, charge compensation may be achieved either by reducing the formal oxygen valence to 0⁻, or by decreasing the oxygen content, or by a combination of both. The greater thermal stability of the samples containing K does not in itself resolve this dilemma, and more research is needed.

Acknowledgement.

This research was supported by a grant from the Belfer Foundation for Energy Research, Tel-Aviv.

REFERENCES

- 1) I. Felner and B. Barbara, Solid State Comm. 66, 205 (1988).
- **2)** I. Felner, M. Kowitt, Y. Lehavi, D. Edery, L. Ben-Dor, Y. Wolfus and I. Nowik, Modern Phys. Lett.2. 2, 713 (1988).
- 3) J.D. Jorgensen, B.W. Veal, V.K. Kwok, G.W. Corbtree, A. Umezawa, L.J. Nowicki and A.P. Paulikas, Phys. Rev. B 36, 5731 (1987).
- 4) J.M. Trascon, W.R. McKinnon, L.H. Greene, G.H. Hull and E.M. Vogel, Phys. Rev. 236, 226 (1987).
- 5) H.G. Langer and R.A. Orchiara, Thermochima Acta 133, 33 (1988).
- 6) R.J. Cava et al. Phys. Rev. B 37, 5912 (1988).