THE THERMAL STABILITY OF $RBa_{2-x}K_{x}Cu_{3}O_{z}$ (R = Y and Eu)

I. Felner

Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, ISRAEL.

ABSTRACT

The thermal stability of ceramic compounds $RBa_2Cu_3O_z$ R=Y and Eu where Ba^{++} is replaced by K⁺ is investigated here by TG analysis. The release of oxygen in RBaKCu₃O₂ compounds starts at about 700°C, which is much higher than for undoped samples. Two major steps in the TG curves are observed for RBa_{1.5}K_{0.5}Cu₃O₂ samples, corresponding to the oxygen-release temperatures of undoped and doped samples, respectively.

INTRODUCTION

Many experimental studies of superconductivity in YBa₂Cu₃O_z have investigated the effects of substituting different ions at various sites in the lattice. In recent studies [1-2] we substituted monovalent K⁺ for divalent Ba²⁺; they have similar ionic radii, 1.33Å and 1.35Å, respectively. In most cases the introduction of impurity atoms other than rare earths into the YBa₂Cu₃O_z lattice drastically reduces T_c and shifts the crystal symmetry from orthorhombic to tetragonal^[3]. In the case of YBa₂Cu₃O_z, up to 50% of the Ba has been replaced by K without noticeably affecting T_c, crystal symmetry, or lattice parameters. On the other hand, the EuBa_{2-x}K_xCu₃O_z system behaves quite differently. A progressive decrease in T_c is observed with increasing K⁺ concentration (Table 1), leading ultimately to a non-superconducting compound, EuBaKCu₃O_z. X-ray powder diffraction showed^[2] all these samples to be single-phase with an orthorhombic unit cell for pure EuBa₂Cu₃O_z, whereas a tetragonal structure is induced in the K⁺ doped samples.

Thermal Analysis Highlights, 9th ICTA, Jerusalem, Israel, 21–25 August 1988. 0040-6031/89/\$03.50 © 1989 Elsevier Science Publishers B.V. In the present paper it is shown that, although the superconducting behavior of $RBa_{2-x}K_xCu_3O_z$ systems differs for R=Y and R=Eu, the thermal stability patterns for both systems are quite similar. It is evident that both RBaKCu_3O_z compounds are much more stable than the corresponding $RBa_2Cu_3O_z$ compounds. In the undoped systems oxygen loss starts at 450-500°C, while in the K-doped systems oxygen is not released below about 700°C. At intermediate concentrations two major steps are observed in the TG curves.

EXPERIMENTAL DETAILS

Experimental details concerning sample preparation and susceptibility measurements to determine T_c are given in ref. 2. Thermogravimetry in a reducing atmosphere was carried out with a Mettler Thermal Analyzer at a constant temperature increment rate of $10^{\circ}C/min$.

RESULTS AND DISCUSSION

The oxygen weight losses of some samples investigated are shown in Figs. 1 and 2. The TG curves obtained for undoped $YBa_2Cu_3O_z$ and $EuRa_2Cu_3O_z$ (not shown) are similar to curves reported by others [4-6]. On exposure to the laboratory environment some water is absorbed, causing the slight decrease in weight observed at low temperatures. Oxygen begins to be liberated in significant quantities at about 450°C, indicated by a weight loss of 1.6% at the first step of the $YBa_2Cu_3O_z$ curve (Fig. 1), corresponding to a loss of 0.66 oxygen atoms per formula unit (Table 1). Progressive weight loss continued up to 800°C, resulting in a nonsuperconducting phase.

For the RBaKCu₃O_z compounds, the thermal stability behavior is quite different. Beside the slight decrease in weight observed at low temperatures, no weight loss is observed for either sample up to 600°C (Fig. 1-2). A minor step in the curves is observed at 700° and 760° for R=Y and Eu, respectively. Most of the oxygen is released at 810° and 860°C, respectively (Table 1). It is worth noting that no weight loss is observed in any of the RBaKCu₃O_z samples at 450-500°C, independent of whether the sample is superconducting -(YBaKCu₃O_z) or not (EuBaKCu₃O_z). In the intermediate composition

276

					oxygen weight loss					
	a(Å)	b(Å) с	(Å) T	_C (K)	T°(C)	% atom	₽°(C)	% atom		
YBa ₂ Cu ₃ O _z	3.822	3.891	11.67	90	450	0.66				
YBa _{1.5} K _{0.5} Cu ₃ O _z	3.826	3.893	11.67	90	450	0.25	800	0.25		
YBaKCu30z	3.835	3,889	11.64	88	600	0.11	810	0.78		
EuBal.5K0.5Cu3Oz	3.863		11.59	64	520	0.33	820	0.58		
EuBaKCu ₃ O _z	3.859		11.67	-	760	0.12	860	0.95		

Lattice parameters, $T_{\rm C}$ and thermal stability data for $RBa_{2-x}K_{x}Cu_{3}O_{z}$ compounds.

TABLE 1

 $RBa_{1.5}K_{0.5}Cu_3O_z$ two major steps in the TG diagrams are observed: the first at about 450-520 °C, corresponding to about 0.3 oxygen atoms per unit cell; and the second, at about 800°C, at which an additional oxygen is released. The total weight loss represents less than one oxygen atom per unit cell. Note

Fig. 1 Thermogravimetric curves of $YBa_{2-x}K_xCu_3O_z$ compounds.

Fig. 2 Thermogravimetric curves of EuBa_{2-x}K_xCu₃O_z compounds.

that both steps occur in the same temperature ranges as those of the $\rm RBa_2Cu_3O_2$ and $\rm RBaKCu_3O_2$ systems mentioned above.

In a previous paper^[2] it was shown that in the $\text{RPa}_{2-x}K_x\text{Cu}_3\text{O}_z$ system a single-phase structure persists up to x=1. Above this concentration a multiphase system is observed. Our conclusion is that in the orthorhombic $\text{RBa}_2\text{Cu}_3\text{O}_z$ unit cell, which contains two equivalent Ba sites, it is possible to replace <u>only</u> one Ba ion with K. It thus appears that the thermal stability of the oxygen depends on whether the unit cell contains K or not. In the pure system oxygen from the Cu-O chains along the b-axis begins to be liberated when heated to above 450° C. This oxygen atom is surrounded only by Cu and Ba atoms. On the other hand, in RBaKCu₃O₂ each unit cell contains one K⁺ ion, so that oxygen in the chains is surrounded by K ions as well. Apparently the RBa_{1.5}K_{0.5}Cu₃O₂ system has two distinct kinds of unit cell, one containing K ions, the other without them: in unit cells which do not contain K⁺, oxygen is released at 450-500°C, as in the pure RBa₂Cu₃O₂ system; the second major weight loss, at about 800°, is related to those unit cells in which Ba⁺⁺ is replaced by K⁺ ions. Note that the amount of oxygen released at each step is

the same in the case of R=Y. As Ba^{++} is substituted for K⁺ in $RBa_2Cu_3O_2$, charge compensation may be achieved either by reducing the formal oxygen valence to O^- , or by decreasing the oxygen content, or by a combination of both. The greater thermal stability of the samples containing K does not in itself resolve this dilemma, and more research is needed.

Acknowledgement.

This research was supported by a grant from the Belfer Foundation for Energy Research, Tel-Aviv.

REFERENCES

- 1) I. Felner and B. Barbara, Solid State Comm. <u>66</u>, 205 (1988).
- I. Felner, M. Kowitt, Y. Lehavi, D. Edery, L. Ben-Dor, Y. Wolfus and I. Nowik, Modern Phys. Lett. <u>B</u>, 2, 713 (1988).
- J.D. Jorgensen, B.W. Veal, W.K. Kwok, G.W. Corbtree, A. Umezawa,
 L.J. Nowicki and A.P. Paulikas, Phys. Rev. B <u>36</u>, 5731 (1987).
- J.M. Trascon, W.R. McKinnon, L.H. Greene, G.H. Hull and E.M. Vogel, Phys. Rev. <u>B36</u>, 226 (1987).
- 5) H.G. Langer and R.A. Orchiara, Thermochima Acta 133, 33 (1988).
- 6) R.J. Cava et al. Phys. Rev. <u>B</u> <u>37</u>, 5912 (1988).